Supplementary Material for
Learning Algebraic Representation for
Systematic Generalization in Abstract Reasoning

Chi Zhang*'®, Sirui Xie*!®, Baoxiong Jia*!
Ying Nian Wul®, Song-Chun Zhu!?:34®, and Yixin Zhu?

! University of California, Los Angeles, CA 90095, USA
2 Institute for Artificial Intelligence, Peking University, Beijing 10080, China
3 Tsinghua University, Beijing 10080, China
4 Beijing Institute for General Artificial Intelligence, Beijing 10080, China
* indicates equal contribution
{chi.zhang,srxie,baoxiongjia}@ucla.edu, {ywu,sczhu}@stat.ucla.edu,
yixin.zhu@pku.edu.cn
Project Website: http://wellyzhang.github.io/project/alans.html

S1 Inducing and Executing Operators

In the main text, we exemplify the induction and the execution process using a
binary operator. Here, we discuss other details regarding the formulation for all
three types of operators, i.e., unary, binary, and ternary.

Unary Operator To induce the unary operator 7, for an attribute a, we solve
the following optimization problem

T2 = argmin £2(T), (S1)
T
where
() = 1/5x (B[|M@s)T - M@s2)[5] +
B ([0 (05)T - MO8 |5] +
E[|M080T - M(25)[3] +)
B[M5, T - M)] +
E[|Ms)T - Meag)l3])+

N T

The indexing follows the row / column major. By taking the derivative with
respect to 7 and setting it to be 0, we have the following solution,

T = A°'B (S3)

https://orcid.org/0000-0003-4948-0714
https://orcid.org/0000-0002-0295-2588
https://orcid.org/0000-0002-4968-3290
https://orcid.org/0000-0001-8029-3664
https://orcid.org/0000-0002-1925-5973
https://orcid.org/0000-0001-7024-1545
http://wellyzhang.github.io/project/alans.html

2 C. Zhang et al.

where, assuming independence,

A =E [M(bg,)"M(b5)] + E[M(b5,)" M(bg)] +
E[M(bg4)" M(054)] +E[M(bg5)" MG 5)] + (54)

E [M (b 7) " M(bS)] + 5X41

07

and
B =

[\v) -

o

—~ o~ o~
S

Q 08 00 o8 O8
=

—_ N — o —

I_II_)IﬂI_II_I

5 B &5 =

Lo B e B e B |

E [M(bm7

Note that as long as Al > 0, A is a symmetric positive definite matrix and hence
is invertible. Compared to the binary case, the unary operator can be regarded
as a special binary operator where one of the operand is a constant, absorbed
into operator learning, and jointly solved.

To predict the answer representation, we solve another optimization problem,
i.€e.,

M = argmin (G(M) = E | |M(55,5)T ~ M| (56)
Taking its derivative and setting it to 0, we have
Mg = E[M(50)] Ty (s7)
Note that this is exactly the execution of the learned operator.

Binary Operator The optimization problem for the binary case can be formulated
as

T = argmin £3(T), (S8)
T

where
G(T) =172 x (B |[Ms)TMVs2) - M@L)[5 | +

E[|Ms)TM0s) - MEselp])+ (59
T

We note that, assuming independence, the solution satisfies

~—~ Y~ o~
=N

S

S

(S10)

=N

o8 o082 o8 08
—

Supplementary Material 3

This is a linear matrix equation and can be turned into a linear equation by vec-
torization. Using vec(AT B) = A® Bvec(T) [], where ® denotes the Kronecker
product, we have

vee(T,") = A™'B, (S11)
where
A=E [M(bﬁ,l)TM(bZ,l)] QE [M(bZ,Q)M(bg,z)T] +
E [M(bg,z;)TM(bgA)] ®E [M(bg,s)M(bg,E))T] + (S12)
oNL]
and

B =vec (E[M (b3)" | E[M(bg5) | E[M©;,)"]) +
vee (B [M (b5 4)" | E[M(bg)| E[M(055)"]) -
Note that A is also symmetric positive definite given positive Aj and hence

invertible.
The predicted answer representation is given by

(S13)

Nij = axgmin (G (M) = E [[MO4)T M0G0 - MIG] . (51

which can be solved by executing the induced binary operator
My =E[M(0;)] T,'E [M(055)] (S15)

Ternary Operator A ternary operation can be regarded as a unary operation
on elements defined on rows / columns. Specifically, we propose to construct
the algebraic representation of a row / column by concatenating the algebraic
representation of each panel in it, i.e.,

M(g,iv Z,m,bﬁ,m) = [M(bﬁz),M(g,i+1);M(zH—?)] (S16)

Then the ternary operator can be solved by

T% = argmin £7(7), (S17)
T
where)
EaT=EMZ7zagT_Mz7z’z +
HT) =E|| R A o] st
AT -
Similar to the unary case discussed above,
T*=A"'B (S19)
where
A=E[M(b31,052,055)" Mg 1,052, 653)] + A1 (520)
and

B=E [M(bg,lv bg,27 bg,?,)T] E [M(bgAa bg,57 bg,e’)] : (521)

4 C. Zhang et al.

Correspondingly, the answer representation can be obtained by first executing
the ternary operator E [M (b 4, b% 5, b8)] 7, and slicing it from the result.

To compute the operator distribution, we model it based on the fitness of
each operator type,

P(T* = Tyt | {To,i}i=1) o exp(=L5(Ty)) (522)
P(T® =Ty | {Lo.}ioy) o exp(—£5(T,")) (523)
P(T* = T | {To,i}i=1) o exp(—€3(Ty")). (S524)

S2 Systematic Splits

In the original work of Zhang et al. [7] and Hu et al. [2], there are four opera-
tors: Constant, Progression, Arithmetic, and Distribute of Three. Progression is
parameterized by its step size (+1/2). Arithmetic includes addition and subtrac-
tion. And Distribute of Three is implemented as shifting and can be either a left
shift or a right one. Note that Constant can be regarded as special Progression
with a step size of 0. In this work, we group all four operators into three types:
unary (Constant and Progression), binary (Arithmetic), and ternary (Distribute
of Three).

To study systematic generalization in abstract relation learning, we use the
Raven’s Progressive Matrices (RPM) generation method proposed in Zhang et
al. [7] and Hu et al. [2] and carefully split data into three regimes:

— Systematicity: The training set and the test set contain all three types of
operators but disjoint instances. Specifically, the training set has Constant,
Progression of +1, addition in Arithmetic, and left shift in Distribute of Three,
while in the test set there are Progression of +2, subtraction in Arithmetic,
and right shift in Distribute of Three.

— Productivity: The training set contains only unary operators and the test
set only binary operators. Specifically, the training set has Constant and all
instances of Progression, while the test set all instances of Arithmetic.

— Localism: The training set contains only binary operators and the test set only
unary operators. Specifically, the training set has all instances of Arithmetic
and the test set Constant and all instances of Progression.

Please see Figs. to [S3| for examples in the three splits.

Supplementary Material

o o EEOOO oo b o3
o (o) o] O O > > >
o BEEB OO0 ogr> > 8]
B B OOfcoe @@ T OCO
[e] o oo 90 O >
BOOO|lece SOO OO >
O (oo > o ©
oo ? > Do ?
00 ° >>P>O ©
[m] EEE s s
[m] = EEE s s e o ° o
1 2 3 4 1 2 4
OO0 o oofe a
000 o oo o © o
OO0 o oojo] ‘ s “ °
5 8 7

Fig. S1. A training example (left) and a test example (right) in the system-
aticity split. Note that in the training example, the arithmetic relation (in number)
is addition, and the shifting is always a left shift (in type, size, and color). In the test
example, the shifting becomes a right shift (in type), the size progression has a step of
2, and the color arithmetic becomes subtraction.

cooc0ooo@eee Q [vw |[vew
@] vV vVve
o o) Qv vivveye
4 4 4 (4 4 4 (4 4 a o000 b > >
4 4 |a 4 |4 4 o0 I IS
® o> IS
O00000 X
O @) ? L ?
O (@) ® a A
T I9000|v v v[vvvw I YYX T
v) « < AAAarsanroee
<) B < a4 aa| AA @9
1 2
000 @@0@|ccev v AAAecec|eee 0O
) @ ° < r'VYWXXILEXX X X |
° [2) ° v AAl ee| oo @@
[} E [} 7 g

Fig.S2. A training example (left) and a test example (right) in the produc-
tivity split. Note that in the training example, the constant rule is applied to number,
type, and size, while the progression rule is applied on color. In the testing example,
the arithmetic rule is applied on all attributes.

vvv] vv[@ aag¢ oo @G
vVVvVv|v Ao oo aaQ
vvvivvy @ ® OOQ0adig O
444

4|4 @ o o L2)
44404 90 ° °
» » I g 4
SN > ? o0 0 o ?
» > D 4 o o
‘0 o0 oo) o oo s e Q0
o000 00|060 OO0
1 2 °2 4
* * ® o6 o |[o r W OW
0 006 000000
- ° o .g © O

Fig. S3. A training example (left) and a test example (right) in the localism
split. Note that in the training example, the arithmetic rule is on all attributes. In the
test example, the progression rule is applied on number and the constant rule on all
other attributes.

6 C. Zhang et al.

S3 Implementation Details

S3.1 Network Architecture

We use a LeNet-like architecture [5] for each branch of the object CNN; see
Tab. [S1] for the design. Note that the object CNN consists of four branches, in-
cluding objectiveness, type, size, and color. The parameters of the Convolution
denote the output channel size, kernel size, and stride, respectively. A Batch-
Norm layer is parameterized by the number of channels, whereas a MaxPool
layer by its stride. An output size is used to specify parameters of a Linear layer.
m equals 2, 5, 6, 10 for objectiveness, type, size, and color, respectively. For
numerical stability, we use LogSoftMax to turn a probability simplex into its log
space.

Table S1. The network architecture used for each branch of the object CNN.

Operator Parameters

Convolution [6,5,1]

BatchNorm 6
SoftPlus

MaxPool 2
Convolution [16,5,1]
BatchNorm 16
SoftPlus

MaxPool 2
Linear 120
SoftPlus

Linear 84
SoftPlus

Linear m
LogSoftMax

S3.2 Other Hyperparameters

For the inner regularized linear regression, we set different regularization coeffi-
cients for different attributes but, for the same attribute, we keep them the same
across all three types of operators: A = 10~ for position, A = 10~ for number,
A = 1076 for type, A = 1076 for size, and A = 5 x 10~ for color. All of the
regularization terms in Eq. (10) in the main text are set to be 1, and {M§} and
{M®} are initialized as 2 x 2 square matrices.

For training, we first train for 10 epochs parameters regarding objectiveness,
including the objectiveness branch and the representation matrices on position
and number. Next, we perform 2 rounds of cyclic training on parameters regard-
ing type, size, and color, each of which experiences 10 epochs of updates in a

Supplementary Material 7

round. Finally, we fine-tune all parameters for another 10 epochs, totaling up
to 80 training epochs. The entire system is optimized using ADAM [3] with a
learning rate of 9.5 x 107°.

Of note, we realize that it is still hard for the model to converge despite
of scheduled training. We recommend warm-starting the perception component
with a limited number of annotations; 5 to 8 samples should suffice.

S4 Marginalization for Other Attributes

For the attribute of position, we denote its value as R°, a binary vector of length
N, with each entry corresponding to one of the N windows. Then we have

N
P(Position = R°) = [[P(r9 = RY), (S25)
j=1

where P(r}’) denotes the jth region’s estimated objectiveness distribution re-
turned by a CNN as in the main text.
For the attribute of type, the panel attribute of type being k is evaluated as

P(Type=k) = > | [[P(r}=k)|P(Position = R°), (S26)
Re \j,Rg=1

where P(ré) denotes the jth region’s estimated type distribution returned by a
CNN.

The computation for size and color is exactly the same as type, except that
we use the region’s estimated size and color distribution returned by a CNN.

S5 Discussions on Neural Visual Perception

Why not train a CNN to predict the position and number of objects? The CNN
is trained to predict the type, size, color, and object existence in a window.
The object existence in windows is marginalized to be a Number distribution
and Position distribution. This is a light-weight method for object detection.
Nevertheless, it is also possible to use a Fast-RCNN like method to predict object
positions (this implies number) directly. However, in this way, the framework
loses the probabilistic interpretation (the object proposal branch is currently
still deterministic), and we cannot perform end-to-end learning.

How does the CNN predict the presence of an object, its type, size, and color
given that it is not trained to do that? For each window, the CNN outputs 4
softmaxed vectors, corresponding to the probability distributions of object exis-
tence, object type, object size, and object color. The spaces for these attributes
are pre-defined. CNN’s weights are then jointly trained in the framework. Such a
design follows recent neuro-symbolic methods [IJ6] that also rely on the implicitly

8 C. Zhang et al.

trained representation. In short, we assign semantics to the implicitly trained rep-
resentation (probability distributions for attributes), performs marginalization
and reasoning as if they are ground-truth attribute distributions, and jointly
train using only the problem’s target label.

S6 Discussions on Algebraic Abstract Reasoning

Are the learned operators interpretable and aligned with ground-truth? As dif-
ferent operators are of different shapes and are represented as matrices with
multiple entries, it is difficult to quantitatively evaluate the fitness in general.
However, we have noticed the following patterns of the learned matrices in our
case-by-case examination: (1) Approximate permutation matrices for the shift-
ing operation in unary operators (Progression in position) and ternary opera-
tors (Distribute of Three). Algebraically, shifting elements in a vector is exactly
implemented as the product with a permutation matrix in the representation
theory. (2) Approximate identity matrix that keeps the distribution the same
and it corresponds to the Constant relation. (3) Approximate successor matrices
that can be understood as Progression when multiplied.

References

1. Han, C., Mao, J., Gan, C., Tenenbaum, J., Wu, J.: Visual concept-metaconcept
learning. In: Advances in Neural Information Processing Systems (NeurIPS) (2019)

2. Hu, S., Ma, Y., Liu, X., Wei, Y., Bai, S.: Hierarchical rule induction network for
abstract visual reasoning. arXiv preprint arXiv:2002.06838 (2020)

3. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: International
Conference on Learning Representations (ICLR) (2014)

4. Lancaster, P.: Explicit solutions of linear matrix equations. STAM Review 12(4),
544-566 (1970)

5. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE 86(11), 2278-2324 (1998)

6. Mao, J., Gan, C., Kohli, P., Tenenbaum, J.B., Wu, J.: The neuro-symbolic con-
cept learner: Interpreting scenes, words, and sentences from natural supervision. In:
International Conference on Learning Representations (ICLR) (2019)

7. Zhang, C., Gao, F., Jia, B., Zhu, Y., Zhu, S.C.: Raven: A dataset for relational
and analogical visual reasoning. In: Conference on Computer Vision and Pattern
Recognition (CVPR) (2019)

	Supplementary Material for Learning Algebraic Representation forSystematic Generalization in Abstract Reasoning

